

### DEPARTMENT OF COMPUTER SYSTEM ENGINEERING Digital Integrated Circuits - ENCS333

### Dr. Khader Mohammad Lecture #5 Design Matrices and Logic Design

### **Digital Integrated Circuits**

|    | Subject                                              |
|----|------------------------------------------------------|
|    | Introduction to Digital Integrated Circuits Design   |
| 2  | Semiconductor material: pn-junction, NMOS, PMOS      |
| 3  | IC Manufacturing and Design Metrics CMOS             |
| 4  | Transistor Devices and Logic Design                  |
|    | The CMOS inverter                                    |
| 5  | Design Matrices and Combinational logic structures   |
| 6  | Sequential logic gates; Latches and Flip-Flops       |
|    | Layout of an Inverter and basic gates                |
| 8  | Parasitic Capacitance Estimation                     |
| 9  | Device modeling parameterization from I-V curves.    |
|    | Short Test                                           |
| 10 | Arithmetic building blocks                           |
|    | Interconnect: R, L and C - Wire modeling             |
| 12 | Timing                                               |
|    | Power dissipation;                                   |
| 13 | SPICE Simulation Techniques ( Project )              |
| 14 | Memories and array structures                        |
|    | Midterm                                              |
| 15 | Clock Distribution                                   |
| 16 | Supply and Threshold Voltage Scaling                 |
|    | Reliability and IC qualification process             |
| 18 | Advanced Voltage Scaling Techniques                  |
| 19 | Power Reduction Through Switching Activity Reduction |
| 20 | CAD tools and algorithms                             |
|    |                                                      |

Final & Project discussion

### DIGITAL GATES Fundamental Parameters

- Functionality
- Reliability, Robustness
- Area
- Performance
  - Speed (delay)
  - Power Consumption
  - Energy

## **Design Metrics**

- □ How to evaluate performance of a digital circuit (gate, block, ...)?
  - Cost
  - Reliability
  - Speed/Performance (delay, frequency)
  - Power

## Reliability

The real world is analog

- All physical quantities you deal with as a circuit designer are actually continuous
   Thus, even a "digital" signal can be pair.
- o Thus, even a "digital" signal can be noisy:



## **Noise and Digital Systems**

Circuit needs to works despite "analog" noise

- Digital gates can reject noise
- This is actually how digital systems are defined
- Digital system is one where:
- Discrete values mapped to analog levels and back
- All the elements (gates) can reject noise
  - For "small" amounts of noise, output noise is less than input noise
- Thus, for sufficiently "small" noise, the system acts as if it was noiseless

## **Noise Rejection**

□ To see if a gate rejects noise

- Look at its DC voltage transfer characteristic (VTC)
- See what happens when input is not exactly 1 or 0



## More Realistic VTC



8

## Voltage Mapping



## **Definitions of Noise Margins**



Noise margin high:  $NM_{H} = V_{OH} - V_{IH}$ 

Noise margin low:  $NM_L = V_{IL} - V_{OL}$ 

### Digital Noise Reduction: Regenerative Property



A chain of inverters



Simulated response

### **Regenerative Property**







### Example

 $\Box V_{OH} = 3.6V$  $\Box V_{O/} = 0.4V$  $\Box V_{''} = 0.6V$  $\Box V_{IH} = 2.3V$  $\Box NM_{H} = V_{OH} - V_{H} = 1.3V$  $\square NM_{1} = V_{11} - V_{01} = 0.2V$ 

## Summery

Understanding the design metrics that govern digital design is crucial

We discussed cost and reliability so far

□ Key design messages so far:

- Keep chip area as small as possible
- Pick design styles and parameters so that noise margins are reasonable
- Summary of some key reliability metrics:
  - Noise transfer functions & margin (ideal: gain = ∞, margin = V<sub>dd</sub>/2)
  - Output impedance (ideal: R<sub>o</sub> = 0)
  - Input impedance (ideal: R<sub>i</sub> = ∞)

### **Static Logic Gates**

At every point in time (except during the switching transients) each gate output is connected to either  $V_{DD}$  or  $V_{SS}$  via a low resistive path.

The outputs of the gates assume at all times the valu of the Boolean function implemented by the circuit (ignoring, once again, the transient effects during switching periods).

(Will contrast this later to dynamic circuit style.)



PUN and PDN are dual logic networks PUN and PDN functions are complementary

## REMEMBER ....



## **Generic Static CMOS Gate**

- For every set of input logic values, either pullup or pulldown network makes connection to VDD or GND
- If both connected, power rails would be shorted together
- If neither connected, output would float (tristate logic)



## **Basic Logic**

#### NMOS devices in series implement a NAND function



NMOS devices in parallel implement a NOR function





NMOS will not pass a "1" PMOS will not pass a "0"

## NMOS Transistors in Series/Parallel Connection

□ Transistor ↔ switch controlled by its gate sig

NMOS switch closes when switch control input is



## **PMOS Transistors** in Series/Parallel Connection

PMOS switch closes when switch control is I



## **Complementary CMOS Logic Style**

PUP is the <u>dual</u> to PDN (can be shown using DeMorgan's Theorems

 $\overline{A+B} = \overline{AB}$  $\overline{AB} = \overline{A} + \overline{B}$ 

Static CMOS gates are always inverting



AND = NAND + INV

## **Example Gate: NAND**



□ PDN: G = AB  $\Rightarrow$  Conduction to GND □ PUN: F = A + B = AB  $\Rightarrow$  Conduction to V<sub>DD</sub>

 $\Box \overline{\mathsf{G}(\mathsf{In}_1,\mathsf{In}_2,\mathsf{In}_3,\ldots)} \equiv \mathsf{F}(\overline{\mathsf{In}_1},\overline{\mathsf{In}_2},\overline{\mathsf{In}_3},\ldots)$ 

 When both A and B are high, output is low. When either A or B is low, output is high



### **NAND Gate Layout**



# **Example Gate: NOR**



When both A and B are low, output is high When either A or B is high, output is low  $A = - - (\overline{A+B})$ 

# **Complex CMOS Gate**



# **CMOS Properties**

- Full rail-to-rail swing
- Symmetrical VTC
- Propagation delay function of load capacitance and resistance of transistors
- No static power dissipation
- Direct path current during switching

### **Pullup is Dual of Pulldown Network**

For NAND gate, f=(A.B) Pulldown f = A.B Pullup p = f = A.B = A+B (De Morgan's Laws) For NOR gate, f=(A+B) Pulldown f = A+B Pullup p = f = A+B = A.B



### **More Complex Example**

$$f = (A+B).C$$



## Primary Performance Metric: Delay



How to define delay in a universal way?

### **Delay Definitions**



## A First-Order RC Network



Important model – matches delay of an inverter

### **Power Dissipation**

Instantaneous power:  $p(t) = v(t)i(t) = V_{supply}i(t)$ 

Peak power:  
$$P_{peak} = V_{supply} i_{peak}$$

Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t) dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t) dt$$

# "Power-Delay" and Energy-Delay

- Want low power and low delay, so how about optimizing the product of the two?
  - So-called "Power-Delay Product"
- Power · Delay is by definition Energy
  - Optimizing this pushes you to go as slow as possible
- Alternative gate metric: Energy-Delay Product
  EDP = (P<sub>av</sub>·t<sub>p</sub>)·t<sub>p</sub> = E·t<sub>p</sub>



□ The voltage on C<sub>L</sub> eventually settles to V<sub>DD</sub>

Thus, charge stored on the capacitor is C<sub>L</sub>V<sub>DD</sub>
 This charge has to flow out of the power supply

□ So, energy is just  $Q \cdot V_{DD} = (C_L V_{DD}) \cdot V_{DD}$ 

# Energy



$$E_{0\to1} = \int_{0}^{T} P_{DD}(t) dt = V_{DD} \int_{0}^{T} i_{DD}(t) dt = V_{DD} \int_{0}^{DD} C_{L} dv_{out} = C_{L} V_{DD}^{2}$$
$$E_{C} = \int_{0}^{T} P_{C}(t) dt = \int_{0}^{T} v_{out} i_{L}(t) dt = \int_{0}^{V_{DD}} C_{L} v_{out} dv_{out} = \frac{1}{2} C_{L} V_{DD}^{2}$$